(12)

UK Patent Application .. GB .2 407 655 .. A

(43) Date of A Publication

04.05.2005

(21) Application No: 0325145.1 (51)
(22) Date of Filing: 28.10.2003
(52)

(71) Applicant(s):

Symbian Ltd (56)

{Incorporated in the United Kingdom)

2-6 Boundary Row, Southwark, LONDON,

SE1 8HP, United Kingdom
(72) Inventor(s): (58)

(74)

Andrew Thoelke

Agent and/or Address for Service:
Symbian Limited

Legal Department, 2-6 Boundary Row,
Southwark, LONDON, SE1 8HP,
United Kingdom

INT CL”:
GO6F 9/445

UK CL (Edition X):
G4A APX

Documents Cited:
GB 2354851 A

FR 002820221 A
US 6052778 A

EP 0908817 A2
US 6442752 B1

Field of Search:

UK CL (Edition W) G4A

INT CL” GO6F

Other: Online: EPODOC, WPI, JAPIO

(54)

(57)

Abstract Title: Mapping dynamic link libraries in a computing device.

A dynamic link library (DLL) in a computing device comprises a first part and an extension part. The first
part has selected entry point ordinals by which an application program may link to one or more first
functions. The application program may also link to one or more further functions in the extension part.
The one or more first functions may be provided as part of an operating system for the device and the
extension part may be provided as a private function.

3" party
Platform.dll Platform.lib application
using
Original Function 1 [«—p» Ordinal 1 original
Original Function 2 [d—P» Ordinal 2 functions
Original Function 3 [~ Ordinal 3 LINK and.
extension
Original Function 4 t—p» Ordinal 4 functions
Original Function 5 |4—) Ordinal 5 Extension.dll Extension.lib
Product Addition 1 Ordinal 6 Qriginal Function 1 <P Ordinal 1 /—'—
— - LINK — - - LINK
Product Addition 2 (P Ordinal 7 Origina! Function 2 [—» Ordinal 2 |

Original Printed on Recycled Paper

VY Q99 [0 ¢ 9O

1/5

evolution
OSvX P OS v X+1
l based on based on
evolution
Platform Version Y > Platform Version Y+1
based on based on based on
Product A |] Product B evolution P4 product B v2

P! Product C evolution P4 product C v2
—P| Product D evolution Product D v2
—» Eic. evolution Etc.

Fig.

1.

2/5

MyProvider.dll

MyProvider.dll

Function 1

Function 2

Function 3

Function 1

Function 2

Function 3

Function 4

Function 5

Function 4

Function 5

Feature ??

Feature 7?7

Feature 7?

Feature ??

MyProvider.dli MyProvider.dll
Function 1 Function 1
Funchon 2 Function 2
Function 3 Function 3
Function 4 Function 4
Function 5 Function 5

Platform 1.1 Platform 1.1
Platform 1.2 Platform 1.2
Product 2.1
Product 2.2

MyProvider.dii MyProvider.dll
Function 1 Function 1
Function 2 Function 2
Function 3 ’ Function 3
Function 4 Function 4
Function 5 Function 5

Product 2.1 Product 2.1
Product 2.2 Product 2.2
Platform 1.1
Platform 1.2

Fig. 2.

3/5

Platform.dll Platform.lib 3" party

Original Function 1 —) Ordinal 1 appllc_:atlon

Original Function 2 Ordinal 2 U‘S l.n g

S Foios <+ original
riginal Function <> Ordinal 3 LINK functions

Original Function 4 Ordinal 4

Original Function 5 Ordinal 5

Fig. 3.

4/5

suonduny
uolsusajxa
pue
suoloduny
jeujfui0
Buisn
uofjesjjdde
Aued ¢

ANI

LANE

¢ [eulpiQ

Z uonound [euibluo

| [eulpiO

L uopound [euIbliO

qii'uoisue}xg

1IP"uoisua)x3

ANIT

ANIT

1 eupio <4 Zuonppy joNpoid
9 [eupIO <4 | uonippy jonporg
S [euipO 4P| S uonoung feuBuo
¥ [euIpIO <4—p| v uooung [euibup
£ leupi0 4P| € uonoung reuibuo
Z feup1o 4| Zuomoung leuibuo
} [eUIPIO <4 | uonouny jeuibup
qiwuopeld lIP'wrone|d

5/5

suopduny
uolsue)xe
pue
‘UO|SIBA
wuopned
Mau wouy
suojpouny
meu
‘suopouny
JeuiBrio
Bujsn
uonesjjdde
Apued >

ANIT

¢ [euipio

¢ uonoung jeuibuo

|

L leupio

} uoRouN [eUIBLO

ANIT

‘G "Bi4

qii'uoisueixgy

lip'uoisueixy

AN

|

BIEUPIO || 7 uomppy 1onpoig
8 |euipso <4—p| | uomppy 1onpoid
L |euipo <) zuonppyseump
9 [eupio <4 | uonippy Jeump
G feuipiQ 4| 5 uogoung jeuibup
¥ [eulpIO <4 % uonoung feuibuQ
€ [euplO <4 ¢ uonoung jeuiBuo
Z leutpIO 4| 2 uonoung jeuibuo
I leupiQ <—{ | uvogoung jeuBug
qll'uuope|d lipruuoye|d

2407655

MAPPING OF DYNAMIC LINK LIBRARIES IN A COMPUTING DEVICE

The present invention relates to a method of accessing data in a computing
device and, in particular to a method of accessing data held in a dynamic link
library in the computing device. The present invention also relates to a

computing device controlled by the method.

The term computing device as used herein is to be expansively construed to
cover any form of electrical device and includes, data recording devices, such
as digital still and movie cameras of any form factor, computers of any type or
form, including hand held and personal computers, and communication
devices of any form factor, including mobile phones, smart phones,
communicators which combine communications, image recording and/or
playback, and computing functionality within a single device, and other forms

of wireless and wired information devices.

Most computing devices operate under the control of an operating system.
The operating system can be regarded as the software that enables all the
programs to be run on the computing device and can be key to greater

operating efficiency and easier application development.

An operating system manages the hardware and software resources of the
computing device. These resources include such things as the central
processor unit (CPU), memory, and the disk space, if a disc forms part of or is
used in conjunction with the computing device. As such, the operating system
provides a stable, consistent way for applications running on the computing
device to deal with the hardware resources of the computing device without
the application needing to know all the details of the physical resources
available to the hardware.

This task of managing the hardware and software resources is very important,
because various programs and input methods compete for the attention of the

CPU and demand memory, storage and input/output (1//O) resources for their

own purposes. In this capacity, the operating system ensures that each
application program is provided with the necessary resources, but always has
due regard to the finite physical resources available to the device. An
application program can be regarded as a complete, self-contained program

that performs a specific function directly for the user of the device.

Another task that may be performed by the operating system is that of
providing a consistent application program, or executable, interface (APT),
This is especially important if there is to be more than one of a particular type
of computer using the operating system, or if the hardware making up the
computer is ever open to change. This is particularly the case when the core
operating system has several different users, such as can typically occur with
computing devices in the form of wireless communications devices, such as
smart phones.

With these devices it is not uncommon for various device manufacturers and
device suppliers to adopt certain components of a core operating system as
common components, but to tailor other components of the core operating
system to their respective device requirements. It is pointed out that one
distinction between an application program and the operating system is that
applications run in ‘user mode’ (non-priviieged mode), while operating
systems and related utilities usually run in ‘supervisor mode’ (privileged
mode). Hence, even in the smart phone example above, there are certain
important components of the operating system, often referred as kernel
components, that are maintained exclusively in the “supervisor mode”

A consistent application program interface (API) allows an application
program for one computing device to run on another computing device of the
same type, notwithstanding that the amount of memory or the quantity of
storage is different on the two devices. Even if a particular computing device
is unique, the operating system can ensure that application programs
continue to run when hardware upgrades and updates occur, because the

operating system and not the application program is responsible for managing

the hardware and the distribution of its resources.

To further the efficient use of the device resources, certain functions and
modules which may be common to a number of application programs may pe
stored in the form of a library so that these functions and modules are only
stored once and not replicated in each of the application programs with which
they are to be used. The contents of the library are therefore selectively
linked to the application programs when they are loaded or run rather than
being compiled within the individual application programs themselves. It
follows that the same block of library code representing a function or module
can be shared between several tasks to run on the device rather than each

task containing copies of the routines it uses.

These libraries link dynamically with the application programs as the
programs are run and therefore the libraries are commonly known as dynamic
link libraries (DLLs). Hence, most modermn computer operating systems
provide a dynamic link library facility that enables certain executable
procedures and functions to be provided in the form of a library that is
separate from the application programs that execute on the computing device.
Typically, an application program is dynamically linked to the library at run-
time, so that the application program can call one or more of the procedures
and functions that are exported by the library. Exported procedures are
commonly referred to as entry points into the library.

Unlike regular application programs, which are generally executed from the
beginning, a DLL can be entered at any entry point. There are two main ways
of identifying these entry points into a DLL. The first option is to refer to the
entry points by name. The second option is to refer to the entry points by
ordinal number. This latter option is frequently referred to as function ordinal
mapping or function ordinal linking. Names are potentially long in comparison
to ordinals and require additional code for their definition. Therefore, the use
of names is generally considered to be wasteful of the Read Only Memory
(ROM) and Random Access Memory (RAM) resources of the computing

device in comparison to the use of ordinal numbers. Ordinal linking of the
access points is therefore the preference in certain operating systems, and
particularly in those operating systems for use in smart phones because these
types of computing devices have very restricted physical resources in
comparison to those available in desktop or portable PC devices, and

therefore the efficient use of code is of paramount importance.

DLLs provide, therefore, a way by which application programs can be
provided in modular format so that functionality can be updated and reused
more easily. They also help reduce memory overhead when several
applications use the same functionality at the same time, because although
each application is provided with a copy of the data, they can share the code.
Furthermore, the dynamic linking allows a module to include only the
information needed to locate an exported DLL function at load time or run
time.

There is an increasing requirement for operating systems to provide a
combination of compatibility with customisability. This is particularly the case
with smart phone operating systems, such as the Symbian OS™ operating
system supplied by Symbian Limited of London, England. Typically, such an
operating system is supplied to handset manufacturers, who subsequently
provide additional device functionality for operation under the control of the
operating system. This means that an operating system of this type must
maintain Binary Compatibility in its APIs, whilst at the same time allowing
derived platforms and products to add innovative and differentiating
functionality to these APIs in order to customise the operating system to the
requirements of the respective handset manufacturers.

However, there are difficulties associated with co-ordinating the DLL entry
points as an operating system of this type evolves from one release to the
next.

In a first aspect, the present invention seeks to provide a method of providing
a dynamic link library in a computing device in which these problems are
substantially alleviated.

Accordingly, there is provided a method of providing a dynamic link library for
providing functions for use by an executable program in a computing devicé,
the method comprising providing the dynamic link library as a first part having
first locations from which one or more first functions may be accessed for use
by the executable program, and an extension part for enabling the executable
program to access one or more further functions additional to the one or more
first functions and located in the first part at locations additional to the first
locations.

In a second aspect of the present invention there is provided a computing
device operating according to the method of the first aspect.

According to a third aspect of the present invention there is provided
computer software arranged to cause a computing device to operate in

accordance with the first aspect.

An embodiment of the present invention will now be described, by way of
further example only, with reference to the accompanying drawings in which:-

Figure 1 is a diagram showing schematically smart phone platform evolution;

Figure 2 is a diagram showing schematically how conflict can arise between
ordinals of a DLL with parallel platform evolution:

Figure 3 is a diagram showing schematically how an application on a smart
phone can access original functions from a DLL;

Figure 4 is a diagram showing how a DLL can be provided in accordance with
the method of the present invention; and

Figure 5 is a diagram showing how an application can access a function from
a modified DLL using a DLL extension provided in accordance with the

method of the present invention.

Referring to figure 1, an example is shown of a typical evolution of a smgrt
phone. For clarity, this evolution is shown in the form of a family tree. The
figure shows a small part of the evolutional “family tree”, but the key point
about this example is that there is no single linear evolution path from one

release of an entity to the next.

It can be seen from the example of figure 1 that the operating system evolves
from OS version X to OS version X+1. But, in parallel the device platform,
which typically may be the device user interface, evolves from platform Y to
platform Y+1, with platform Y being based on OS version X and platform Y+1
being based on OS version X+1. Product A evolves into product B, and these
are both based on platform Y. Product B then evolves into product B version
2, but this is based on platform Y+1. This is because at each level of the
evolution there has been a requirement to add functionality to the basic
platform.

There is an additional requirement to maintain that functionality in future
versions of that level of the family. This means there are multiple routes
through which functional growth can occur. For example, a particular product
will need to inherit additional functionality from the OS transition, from the

platform transition, and from its product predecessor.

Multiple functional inheritance routes cause immediate platform fragmentation
if the operating system uses an ordinal linking scheme to export functions
from the DLL. With this type of scheme each function exported by the DLL is
numbered sequentially. A client application of the DLL calls the functions for
export by this ordinal number. The lookup between functions and ordinals
may be defined in a definiton (.DEF) file of the application concemed.
However, this sequential numbering scheme means that if two parties make
respective function additions to the same API without knowledge of the other,

the function added by each party will be given the same ordinal number (at
the end of the used ordinal number range). This means that program code
built against the DLL modified by a first of the two parties (party one) will use
that ordinal number to access the functionality thought to exist at the ordinal
number concerned in the version of the platform developed by party one.

However, the problems begin if that program code is ever run against the
version of the platform developed by the other of the two parties (party two),
since the function at that ordinal number developed by party one is not the
same as the function at the same ordinal number as developed by party two.
Once this problem has occurred in a released product, there is no way to
correct it without breaking binary compatibility in one or the other platform.
Figure 2 illustrates what happens when an AP! is extended independently by
two parties in parallel, and how the resulting ordinal space cannot be
resolved.

The use of multiple routes of functional inheritance does not pose a problem
so long as each API has a single inheritance route. In practice this means a
single owner for each APl. An owner is allowed to add to a respective AP,
nobody else is. This means that the APl evolves in a linear fashion. For
example, taking the Symbian OS™ operating system as an example, DLLs
owned and provided by Symbian would only be extendable by Symbian, and
would not be extendable by developers of derivative platforms or products.
However, in practice this ideal of not allowing extension to interfaces other
than by the interface owner is at variance with the increasing need to provide
customisation of platforms and products from a common core operating
system.

Because of the continuing need to develop new products and to bring these to
market in the shortest time frame possible, it is relatively commonplace that
various products will be under development by a first party, but which have
added functionality to interfaces owned by one or more other parties. For
example, this could occur if a platform developed by one party adds an API to

one or more libraries owned by another party, or if a product adds an API to

one or more platform libraries; the problem is the same in either case.

It is emphasised that the problem is not that compatibility with the underlying
platform has been broken. In each case the product would be compatible wiﬁh
the current operating system / user interface (OS/UI) platform. The problem is
that if a future revision of the product is made, based on a later version of that
OS / Ul platform, it can only be compatible with either the new version of the
platform, or the previous version of the product, but not both. However, the
requirements are that compatibility with both is essential in order not to
fragment the platform. Such fragmentation would be very damaging to the
operating system and very difficult to recover from.

Hence, a provider of an OS may be faced with a scenario in which;

* the OS provider is adding substantial functionality to its APIs in new
versions of the OS (legitimately)

Ul platform providers are adding considerable functionality to their APIs in
new versions (legitimately)

» Product manufacturers are adding functionality to the OS and Ul platform
APIs in their products, and this is not unreasonable to expect because
these products require differentiation and flexibility from the platform.

However, because the functional additions by each of the above parties are
added at the end of the ordinal number range, the functional additions of the
product manufacturers will be in the same ordinal space as the Ul platform
additions provided by the Ul platform provider, which in turn will be in the
same ordinal space as the additional functionality provided by the OS
provider. Thus, there is potential for conflicts within the ordinal space, of an
unknown scope and from an unknown source. The reason the scope is
unknown is that much of the work being conducted on a platform by the
product manufacturer in order to realise new products is not necessarily
visible to either the OS or the Ul platform providers.

In reality, this situation does not become damaging until two products, or
software development kits (SDKs) through which the products are developed,
become available in the market place with conflicting ordinals. Until that time
it is possible to correct products & SDKs which are not released into the

marketplace.

Hence, the present invention seeks to provide a system which enables users
of the system to add functionality to APls in a safe, extensible way without
endangering future compatibility. In this manner, a third party may add
functionality to an existing API, and in particular to an API which is linked by
ordinal, in a way which does not compromise future evolution of that API. A
second objective is that any future evolution of the original APl which does
occur will not compromise the third party added functionality.

The present invention is applicable to any situation where a third party
requires to add functionality to an existing API which is not owned by that
party. It does not apply when the owner of an API is extending that AP,
because by definition the owner is the maintainer of the API. The present
invention can also be used to remove further potential for conflict where
additions have already been made to an API by a third party.

Figure 3 shows an application linking to Original Functions stored against a
library extension (LIB) of a platform DLL. The application uses the functions
stored in the DLL via the LIB file ordinals. Therefore, when the application
calls for Original Function 1, a link is provided to ordinal 1 of the library
extension which in turn exports the functionality provided by Original Function
1 for use by the application; and so on for the remaining Original Functions
stored at other ordinals in the DLL. This is a known pattern of DLL linkage and
is employed, for example, in the Symbian OS™ operating system.

Figure 4 illustrates how an Extension DLL pattern may be used by an
application for some product addition functions which have been added to the
Original Functions provided from the platform DLL. These product additions

10

are exported from the platform DLL via additional ordinals 6 and 7. However,
these additional ordinals 6 and 7 are not linked to directly by the application
but via the extension DLL. The extension DLL is actually accessed via an
extension library holding the ordinal addresses for the extension DLL, in a
similar manner to the access route for the platform DLL. With the present
invention, it is not permitted for the application to use the additional ordinéls
from the platform DLL directly. But, as can be seen from figure 4, the
application is permitted to use the Original Functions 1 to 5 by exporting them
directly from the platform DLL. This is because the Original Functions are
known both to the operating system and the application to be exportable from
the DLL via, respectively, ordinals 1 to 5 for use by the application.

Many operating systems are now written using an object orientated
programming code, such as C++. With such a system, a preferred way to
achieve the method of the present invention is to implement the product
addition functions as private members of classes. This means that the C++
compiler will enforce client code to use the extension DLL. Furthermore, it is
well known in this art that changes to code originally written by another party
should be kept to a minimum. Hence, in keeping with best practice followed
in this art, the extension DLL need not be provided purely as an adapter for
linking to the platform DLL, but may also be arranged to contain the maijority
of extra code required to provide the additional functionality for the application
programs. Moreover, the extension DLL may be provided in a way such that
it is not specific to a single Platform DLL. Hence, it is envisaged that a single
“Product Extension” DLL may be provided in the ROM of the computing
device, but this single extension DLL is arranged to provide the interface to
the additional functionality of more than one, and perhaps even all of the
platform DLLs. Hence, it is stressed that the method of the present invention
is not restricted to the provision of a respective extension DLL for each
platform DLL. It follows that a product manufacturer may choose to add a
single extension DLL to provide a link to several platform DLLs, or the
additional functionality (extension functions) may be provided by arranging the
extension DLL as an actual extension to an existing product DLL.

1

Alternatively, the extension functions may be grouped in a manner that bears

no relationship to the arrangement of the original platform DLLs.

In the arrangement shown in Figure 4, therefore, the third party application is
linked to Ordinals 1 to 5 of Platform.lib, the library extension of the platfor\m
DLL, and ordinals 1 & 2 of extension.lib, the library extension of the extension
DLL. As far as the application is concerned, it has no visibility of ordinals 6 &
7 of Platform.lib. As a result, a third party SDK for the product does not even
need to contain the extended version of Platform.lib. Therefore, with the
present invention it is possible to substitute the original (ordinals 1 to 5)
version of the library extension Platform.lib in the SDK, and only use the
extended (ordinals 1 to 7) version of the library for platform development.
This means that there is no possibility of code produced by the third party
using the additional ordinals 6 and 7.

Figure 5 shows a later version of the platform, when the owner of the platform
DLL has added some more core functionality to the AP of the platform DLL.
In this case Ordinals 6 & 7 have now been used by the owner in adding the
new functions. Problems would now arise if the application linking to this
platform DLL was expecting to see Product Additions 1 and 2 at these
ordinals, as in the platform version shown in figure 4, because ordinals 6 and
7 are now used, respectively, to export Owner Additions 1 and 2. However, in
this case the problems are avoided since the Product Addition functions 1 and
2 are always called via the extension DLL. Therefore it is acceptable for
these functions each to move to a different ordinal position. In figure 5,
Product Additions are moved, respectively, from ordinals 6 & 7 to ordinals 8 &
9. The only component of the system that links to the ordinals for Product
Additions 1 and 2 is the extension DLL, and therefore this must be rebuilt. No
code changes are necessary, just a re-link in order for the extension DLL to
point at the new ordinal positions 8 and 9 used to export Product Additions 1
and 2 to the application. Because the third party application code is linking to
Extension.lib, and these ordinals remain the same, the third party code does
not need to be rebuilt.

12

An example of program code for implementation of the embodiment of the
present invention as illustrated in figure 5 may be as follows. It is pointed out
that the following example is a relatively simple indication of how the source

code to implement the present invention may be achieved.

The following code extract shows how a function could be added to a header
file of a platform DLL. In this example, there are two functions added to the
header. The public ExtensionFunction will be implemented in the Extension
DLL. It will therefore not be exported from Platform.dll, but from Extension.dIl.
The private DoExtensionFunction will be implemented in the Platform.dll and
therefore will be exported from Platform.dil. This function is made private so
that the compiler will prevent third party code from calling this function through
its ordinal export.

//PlatformbDll .h
Class CMyClass : public CBase
{
public:
// The supplied API of the class

// Product additional functions

// This public exported function will be implemented in the extension

DLL

IMPORT_C void ExtensionFunction () ;
private:

// This private exported function will be implemented in the platform
DLL

IMPORT C void DoExtensionFunction ();

}

The implementation in the platform DLL is to add the code for
DoExtensionFunction. This should contain the minimum of code necessary
for this extension function to be included in the DLL, so as to minimise the
amount of change required. This function will be exported in Platform.lib.

13

//PlatformDll.cpp

CMyClass: :DoExtensionFunction ()

{

// implementation of the required functionality

The implementation in the extension.dll is primarily to enable the call through
to the private DoExtensionFunction in the platform DLL.
DoExtensionFunction is private, so can only be called from within the same
class. Note that the call to DoExtensionFunction is surrounded by other code
which does not need to be in the platform.dll, and therefore is implemented

here to minimise the impact on the platform DLL.

//ExtensionDll.cpp

CMyClass: :ExtensionFunction()

{

// implementation of functionality that does not have to be in

platform.dll
DoExtensionFunction() ;

// 1implementation of functionality that does not have to be in

platform.dll

Preferably, the code should also ensure that only essential changes are made
to the platform DLL. Therefore, all other functionality should preferably be
implemented in the extension DLL. This provides the additional benefit that
there is less chance of clashing functionality arising from subsequent changes
to the platform, and thus future integration of newer platforms will be less
troublesome.

14

Also, if any extension functions are provided in the platform DLL, these should
preferably be made as private functions. This makes it more difficult for a
third party to inadvertently use an extension function in the original API rather
than in the extension DLL. The compiler will then help to enforce the rule that
has been established.

Furthermore, it is also preferable that a publicly released SDK should only
include the original LIB files as supplied. This would mean that third party
code could not possibly call any of the platform additional ordinals, as they are
not present in the LIB files. A third party therefore would have no choice but
to access the extension functionality via the extension DLL, and therefore

would not encounter compatibility problems with future platforms.

By making extension functions private, and excluding the modified libraries
from the SDK, third party code is prevented from calling the product additional
functions created by the provider of the platform DLL. However, it is also
preferable to ensure that ROM code within a device also uses the extension
DLLs. Hence, by restricting the SDK to the original LIB files it is not only third
parties that must use the extension DLL to access the additional functions, but
also all code, i.e. ROM code, that is subsequently incorporated into the
device. Although ROM code can be rebuilt at some future point in time
against new LIB files, it is preferable and highly desirable to maximise binary
compatibility wherever possible and at all times during the lifecycle of any
particular device. It follows that this compatibility can be enabled if the
extension DLL of the present invention is utilised in the above manner.

Although the present invention has been described with reference to particular
embodiments, it will be appreciated that modifications may be effected whilst
remaining within the scope of the present invention as defined by the
appended claims. For example, although the method of the present invention
has been described with reference to DLLs with ordinal linking, it can also be
used with DLLs which link by name. Moreover, the additional functions for

15

use by an application program may be provided in part within the platform
DLL and in part within the extension DLL, and the extension DLL in this
instance may be arranged to cause to link to an additional function in either
the platform DLL or within the extension DLL itself. Furthermore, although the
present invention has been described with reference to a computing device in
the form of a smart phone, the present invention may also be used in other
forms of computing devices, such as portable or desktop PCs, personal digital
assistants (PDAs), or general computer systems.

16

CLAIMS

1. A method of providing a dynamic link library for linking between
functions and an executable program in a computing device, the
method comprising providing the dynamic link library as a first part for
linking the executable program to one or more first functions, and an
extension part for causing the executable program to link to one or
more further functions, additional to the one or more first functions, via

the extension part.

2. A method according to claim 1 wherein at least one of the one or more
further functions is located in the first part.

3. A method according to claim 1 or claim 2 wherein at least one of the
one or more further functions is located in the extension part.

4, A method according to any one of claims 1 to 3 wherein the extension
part is arranged to link to a plurality of the said first parts of dynamic
link libraries in the computing device.

5. A method according to any one of the preceding claims wherein the
extension part is used to provide a link to read only memory (ROM)
code for use within the computing device

6. A method according to any one of the preceding claims wherein the
extension part is provided as a private function.

7. A method according to any one of the preceding claims wherein
address locations in the dynamic link library are linked to by ordinal

number.

10.

17

A method according to any one of the preceding claims wherein the
one or more first functions is/are provided as part of an operating
system for the computing device.

A computing device arranged to operate in accordance with a method

according to any one of claims 1 to 8.

Computer software arranged to cause a computing device to operate in
accordance with a method according to any one of claims 1 to 8.

g The, %
%% Ofﬁoe 5 Y, <
O&T . 1\09 § INVESTOR IN PEOPLE
Application No: GB 0325145.1 Examiner: Dr Mark Shawcross
Claims searched: 1-10 Date of search: 22 March 2004

Patents Act 1977 : Search Report under Section 17

Documents considered to be relevant:

Relevant
to claims

Category Identity of document and passage or figure of particular relevance

X 1-4 & 8-10(GB 2354851 A

X 1-3,5 & 8-1 US 6052778 A (HAGY et al.); abstract, col.1 lines 35-52 & col.2
10 lines 52-59

X 1-4 &9-10 (CIMAI); see EPO & WPI abstracts & fig.2

(IBM); page 8 lines 5-29 & fig.1

FR 2820221 A

Y Document indicating lack of inventive step 1f combined
with one or more other documents of same category

& Member of the same patent family

X 1-4 &9-10| US 6442752 Bl (JENNINGS et al.); abstract & col.4 line 7 to
col.5 line 37 & fig.12
X 1-4&8-10 EP 0908817 A2 (KABISHIKI); paras [0009-0013] & figs 2-4
Categories:
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art

P Document published on or after the declared priority date but before the
fihng date of this nvention

E Patent document published on or after, but with priority date carlier
than, the filing date of this apphcation

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCY:

G4A

Worldwide search of patent documents classified n the following areas of the IPC”:

GO6F

i 8

An FExecutive A cencv of the Denartiment of Trade and Indnctru

	1: Bibliography
	2: Drawings
	3: Drawings
	4: Drawings
	5: Drawings
	6: Drawings
	7: Description
	8: Description
	9: Description
	10: Description
	11: Description
	12: Description
	13: Description
	14: Description
	15: Description
	16: Description
	17: Description
	18: Description
	19: Description
	20: Description
	21: Description
	22: Claims
	23: Claims
	Page 24

